
Create a template for uploading data

Overview
The Flywheel template lets you define rules for what type of files you upload as well as

where to place your data in Flywheel. Leverage your dataset's existing naming

scheme, and use the template to parse folder or file names to create labels and meta-

data in Flywheel.

This guide covers how to create a template:

• What is a template? [2]

• Step 1: Create an Ingest template [3]

• Step 2: De-identify your data if necessary [10]

• Step 3: Run the command [11]

• Additional template examples [9]

• Setting custom metadata

• Using a filename to set acquisition label

• Uploading DICOM files

• Template Reference [14]

• pattern

• select

• scan

• name

• dicom

• filename

• packfile_type

• packfile_name

• Variables for configuring Flywheel metadata

• Additional Flywheel metadata you can configure

• Set custom metadata

• CLI command reference: Ingest template [19]

• Usage

• Required arguments

• Optional arguments
1

• Reporter

• Cluster config

• General

Click Next to start building a template file

What is a template?
The template is a YAML file with instructions for how to upload a dataset.The goal of

the template is to get your data into groups, projects, subjects, sessions, and acquisi-

tions as shown below:

It is likely that your data does not fit into the Flywheel hierarchy exactly, so the tem-

plate allows you to configure how you would like to upload your dataset so it fits into

the above organizational hierarchy. The template also allows you to take folder and

file names and use those for labels in Flywheel. For example, you can use a folder

name from your dataset to name the session in Flywheel.

From your local directory structure
The image below shows an example dataset along with how the structure will fit into

the Flywheel hierarchy.

To the Flywheel hierarchy
Using the methods described in this article, the dataset from above can be trans-

formed into a hierarchy that works in Flywheel:

 Click Next to learn how to create a template file.
2

Step 1: Create a template for file upload
This article explains how to create the template YAML file that contains the instruc-

tions for how Flywheel should upload your dataset.

Below is the basic structure of the Flywheel template file:

- pattern: "{subject}"

- pattern: "{session}"

- pattern: "{acquisition}"

 packfile_type: zip

Note: The group and project are defined in the CLI command itself. We

will cover running the command in a later article.

Each step in the template corresponds to exactly one folder level in your dataset, so

you could use the above template if your dataset had 3 levels of nested folders, and

you wanted to use the entire folder name for labels in Flywheel. However, you will likely

want to configure what data is uploaded.

The steps below show how to build a template along with different examples for how

to configure each step of the template:

1. To begin, open a plain text editor such as Sublime, TextEdit, Notepad, etc.

2. Add - pattern: to the first line. This is the first step of your template:

- pattern:

This pattern field corresponds to the top folder of your dataset. For example,

using the dataset below, the first - pattern:step corresponds to the Amygda-

laSturcturefolder.

3

3. Now, tell Flywheel what to do with this first folder. The most common use cases

for the top-level folder are:

• Use variables to define subject, session, or acquisition labels: You can use all

or part of this folder name as the subject, session, or acquisition label in Fly-

wheel.

For example, to use all of the folder name for the subject label use this in your

template:

- pattern: "{subject}"

The above example would result in a AmygdalaStructure as the subject label

To use only part of the folder name, replace a portion of the folder with the

"{subject]" variable. For example:

- pattern: "{subject}Structure"

This would create a Amygdala as the subject label in Flywheel. Learn more

about using variables in the reference guide below.

• Set additional Flywheel metadata: Metadata has many useful applications in

Flywheel including being used to properly categorize data, create collections, or

curate a data views.

- pattern: "{session.info.dataset}"

4

The example above creates a custom metadata field dataset:

AmygdalaStructure that appears on the session.

Learn more about viewing and editing metadata. Tip: If you aren't

sure of the field name, you can use Advanced Search. Begin typ-

ing a field name, and Advanced Search displays a list of valid Fly-

wheel fields.

• Skip this folder: Use regex to skip this folder level and move on to the next:

- pattern: .*

4. On the second line of your template enter another - pattern: field. This line of

the template corresponds to the first subfolder of your dataset.

Using the same dataset as before, the second step of the template corresponds

to both amyg_s4 and amygs11 since these folders are at the same level.

Some ways to configure the second step of your template:

• Use the predefined variables to define subject, session, or acquisition labels:

Even though there is more than one folder at this level of the hierarchy, we can

still use the variables because the folders share the same naming scheme. You

can upload both folders and their subfolders by substituting the part of the fold-

er name you want to use as the label.

For example, use 4 and 11 as subject labels, use the {subject} variable in place

of that portion of the folder name. For example:

- pattern: .*

- pattern: "amyg_s{subject}"

5

• Set additional Flywheel metadata:

The example below uses the foldername to set both the session label as well

as a custom metadata value:

- pattern: "{subject}"

- pattern: "{session}_{session.info.dataset}"

This pulls out amyg for the session label and s11 for the custom metadata field

called dataset that appears on the session.

Learn more about viewing and editing metadata.

• To skip this level of your dataset: Use regex to skip this folder level and move

on to the next. For example:

- pattern: "{subject}"

- pattern: .*

5. On the 3rd line of your template enter another - pattern: field to define how

you want to upload the next subfolder of your dataset.

Upload both folders and their subfolders by continuing with the same methods

used in the previous steps. For example, to pull the session from both folder

names as well as metadata

- pattern: .*

- pattern: "amyg_s{subject}"

- pattern: "amyg_s*_amyg_{session}_{subject.info.pcol}"

6

The above template pulls out the sess1 and sess2 as 2 different session labels.

Sess1 is uploaded under subject 4, and sess2 is uploaded under subject 11.

6. Continue down your dataset's directory structure and define a - pattern: for

each level of your dataset's hierarchy. Once you reach the folder that contains

your imaging data, continue to step 7.

7. There are special considerations for uploading your scans as acquisitions in Fly-

wheel.

In the example dataset, the folders with the DICOM files are shown below:

There are a few special features for handling the folder with your data:

• Use filenames for labels in Flywheel: Oftentimes your imagining data already

has a useful information in the filename. To leverage that existing name you

can add a scan step for filenames.

The filename scan allows for regex pattern matching, so you can pull out only

the relevant information in each filename. For example:

- pattern: "{group}"

- pattern: "{project}"

- pattern: "{subject}"

- pattern: "{session}"

 scan:

 name: filename

 pattern: "(?P<acquisition>)[^.]*"

The above template would take the filename without the extension and make it

the acquisition label. For example a scan with the filename

8892_14_1_dti.dcm would be labeled as 8892_14_1_dti and the scan

with the filename 10+cmrr_mbepi_task-spatialfrequen-

7

cy_s6_2mm_66sl_PA_TR1.dicom would be labeled as 10+cmrr_mbe-

pi_task-spatialfrequency_s6_2mm_66sl_PA_TR1

Tip: Use angled brackets <> instead of curly brackets {} when us-

ing regex to assign variables. This is a requirement of python re-

gex.

• Validate and package DICOM data: If you have DICOM data, create a dicom

scan step:

- pattern: .*

- pattern: "amyg_s{subject}"

- pattern: "amyg_s*_amyg_{session}_{subject.info.pcol}"

- pattern: "{acquisition}"

 scan:

 name: dicom

When dicom scan is enabled, Flywheel reads through all the files within that

folder, and parses all files with the .dcm extension. Flywheel pulls out relevant

metadata from the DICOM files to use as Flywheel metadata and compresses

all data into a zip file for upload.

If the file is not a valid DICOM file, the file is not uploaded and the import stops

by default. To determine if a file is valid DICOM, we look for a DICM string at

byte 128. However, you can use the -ignore-scan flag in your CLI command

to set it so that Flywheel only ignores the invalid DICOM file and continues to

upload valid files.

• Compress all files into a packfile: If you don't have DICOM data, you should still

compress all of your images for upload using packfile_type: zip. This

creates a single zip file for upload. For example:

- pattern: "{group}"

- pattern: "{project}"

- pattern: "{subject}"

- pattern: "{session}"

8

- pattern: "{acquisition}"

 packfile_type: zip

8. Review your template. Verify that you have defined each of these variables only

once:

• {subject}

• {session}

• {acquisition}

9. Verify that your template is valid YAML using an online tool such as YAML lint.

Click Next to see more example templates.

Additional template examples

Below are some additional template examples.

Setting custom metadata
The example below uses folder names to set 2 different custom metadata fields.

Template

- pattern: "{session.info.dataset}"

- pattern: "XR_{acquisition}"

- pattern: "patient{subject}"

- pattern: "study{session}_{acquisition.info.outcome}"

A session field named dataset and an acquisition field named outcome.

Outcome

Using regex to set acquisition label from a file name
The template below uses the filename from the imaging data to label the acquisitions

in Flywheel.

Template

- pattern: "{subject}"

- pattern: "{session}"

 scan:

9

http://www.yamllint.com/

 name: filename

 pattern: "^(?:[^_]*_){3}(?P<acquisition>[^.]*)"

Outcome

Original Filename Flywheel Acquisition label

20210214_164316_SubjectName_AcqParame-

ter1_AcqParameter2_AcqParameter3.mhd

AcqParameter1_AcqParame-

ter2_AcqParameter3

Regex can quickly become complicated. You can test out your filename and regex us-

ing an online tool such as regex101.

Uploading DICOM files
The template below uses the dicom scan to validate DICOM files before upload:

- pattern: "wimrpetct{subject}_{session}"

- pattern: ".*"

- pattern: "{acquisition}"

 scan:

 name: dicom

Step 2: De-identify your data
To avoid exposing PHI, consider how you may need to de-identify your data before up-

loading it to Flywheel.

When using fw ingest template to upload data, you can de-identify data in the follow-

ing ways:

• Create a project, group, or site de-id profile With this method you create a de-id

profile that applies to an entire project, group, or even site. This method ensures all

data uploaded is de-identified the same way. Learn more about how to enable

project, group, and site de-id profiles.

• Create a de-id profile for this upload. Complete the de-id profile portion of a config

file. Then use the --config flag in your CLI command.

Learn more about creating the config file.

Once you have created a de-id profile, click Next to run the command to upload data.

10

https://regex101.com/

Step 3: Run the fw ingest template command
This article explains how use the template you created in previous steps to upload da-

ta via the Flywheel CLI.

The Flywheel CLI is an additional Flywheel program you download to use on your com-

puter's Command Prompt (Windows) or Terminal (Mac) app. If you have not already,

download and install the CLI before continuing with the steps below.

Step 3: Run the command
Data can be ingest from either an s3 bucket or from your computer.

From an s3 bucket
To upload data from an s3 bucket to Flywheel:

1. Configure your AWS CLI credentials. The Flywheel CLI uses these credentials to

access the data, so you must configure them before running the ingest template

command. The Flywheel CLI does not support passing credential parameters to

it.

See Amazon's documentation for more information on how to use the configure command to set up your credentials

or learn more about creating a shared credentials file or

using environmental variables to set up credentials

2. Start with the following command:

fw ingest template [optional flags] -g [group id] -p

[project label]

[template file location][path to bucket]

3. Replace with the relevant info for your data and environment, and add any option-

al flags. Use the following format for your s3 bucket: s3://[bucket]/[op-

tional-path-to-data]

If you are using the config file to de-id data, you must include the --de-identi-

fy flag. Another helpful flag is --verbose , which shows you a preview of how

your data will be uploaded.

See our ingest template reference guide for more information on the optional

flags.

Windows:

fw ingest template -g testgroup -p ExampleProject --config

C:\Users\ExampleUser\Desktop\config.yaml --verbose

11

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#interactive-configuration
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#shared-credentials-file
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#environment-variables

C:\Users\ExampleUser\Desktop\TemplateExampleFile.yaml s3://

MyStudy/DataForUpload

Mac and Linux:

fw ingest template -g testgroup -p ExampleProject

--config ~/Documents/config.yaml

--verbose ~/Desktop/TemplateExampleFile.yaml

s3://MyStudy/DataForUpload

4. Copy and paste your command into Terminal or Windows Command prompt, and

hit enter.

5. Flywheel CLI displays the data it has found.

6. Review the hierarchy and scan summary to make sure it matches what you ex-

pect.

7. Enter yes to begin importing. The Flywheel CLI displays its import progress.

8. Once complete, sign in to Flywheel, and view your data.

From your computer

1. Open a text editor such as Sublime, TextEdit, or Notepad.

2. Start with the following command:

fw ingest template [optional flags] -g [group id] -p

[project label]

12

[template file location][file path to parent folder of

data to ingest]

3. Replace with the relevant info for your data and environment, and add any option-

al flags.

Tip: If you are using the config file to de-id data, use the --config flag. Another

helpful flag is --verbose , which shows you a preview of how your data will be

uploaded.

See our ingest template reference guide for more information on the optional

flags.

Windows:

fw ingest template -g testgroup -p ExampleProject --config

C:\Users\ExampleUser\Desktop\config.yaml --verbose

C:\Users\ExampleUser\Desktop\TemplateExampleFile.yaml

C:\Users\ExampleUser\Desktop\flywheel\ImportData

Mac and Linux:

fw ingest template -g testgroup -p ExampleProject

--config ~/Documents/config.yaml

--verbose ~/Desktop/TemplateExampleFile.yaml

~/Desktop/flywheel/ImportData

4. Open the Terminal app (Mac and Linux) or Windows Command Prompt app.

5. Copy and paste your command, and hit enter.

6. Flywheel CLI displays the data it has found.

13

7. Review the hierarchy and scan summary to make sure it matches what you ex-

pect.

8. Enter yes to begin importing. The Flywheel CLI displays its import progress.

9. Once complete, sign in to Flywheel, and view your data.

Template fields reference

Reference
The template file consists of instructions for uploading your dataset into Flywheel.

Read below to learn more about the structure of a template file.

• pattern

• select

• scan

• name

• dicom

• filename

• packfile_type

• packfile_name

• Variables for configuring Flywheel metadata

• Additional Flywheel metadata you can configure

• Set custom metadata

14

pattern
The - pattern step specifies what Flywheel should do with the top-level folder of

level of a directory. The first - pattern: field in your template corresponds to the

parent folder in your dataset's directory. Each subsequent - pattern field in your

template walks down each level of folders within that top-level folder.

In general, you need to have a - pattern: field for each folder in your directory. This

is because the template needs instructions for what to do at each folder in the directo-

ry.

Valid values for the - pattern:

• Use a variable to set Flywheel labels for group, project, subject, session, acquisition

based on the folder name

• Skip that level of the directory by using regex: .*

• Use select to set different upload instructions if there are multiple folders at the

same level.

• Use scan to pull out Flywheel labels from a filename instead of folder name or to

validate DICOM files

- pattern: "{group}"

- pattern: "Anxiety Study"

Sets the project label to Anxiety Study no matter what the

folder

name is in your dataset

- pattern: "{subject}"

- pattern: "anx_{session}"

- pattern:"{acquisition}"

 packfile_type: zip

select
Used to start an expression where you set parameters or logical operators for two

folders at the same level of the directory.

You cannot nest a select statement underneath a select statement.

- pattern: "{group}"

- pattern: "{subject}"

15

- pattern: "{session}"

- pattern: "{acquisition}"

- select:

 - pattern: "*.dcm"

 packfile_type: dicom

 - pattern: .*

The above example packs up all files with the extension .dcm and compresses them

into a zip file. The zip file is uploaded with as an acquisition with the acquisition-

label.dicom.zip. All other files are ignored and not uploaded.

scan
Scans can either be filename or dicom. Using scan is optional, but should be used if

you are uploading DICOM data or if you want to parse a filename to use as a metadata

label in Flywheel.

You will define the specific scan type below. Below is an example of a complete scan

step in the profile:

- pattern: "{subject}"

- pattern: "{session}"

 scan:

 name: filename

 pattern: "{acquisition}.dcm"

name

The name fields configures the type of scan.

dicom

When the scan step is set to dicom, Flywheel reads through all the files within that

step of the hierarchy. Flywheel then parses all files with the .dcm extension. If the file

is not a valid DICOM file, the file is not uploaded, and the import stops by default. To

determine if a file is valid DICOM, we look for a DICM string at byte 128.

However, you can use the -force-scan flag in your CLI command to parse all files as

DICOM regardless of the DICM prefix and upload them to Flywheel.

- pattern: "wimrpetct{subject}_{session}"

- pattern: ".*"

16

- pattern: "{acquisition}"

 scan:

 name: dicom

filename

Use the filename scan to parse the file names within that step of the directory. This

allows you to pull out relevant parts of a filename to create labels and add metadata.

When used in combination with regex, you can loop through all files and use the same

piece of the file name string from the files. For example, let's say that all of your im-

ages files have been named using the following naming scheme:

[date]_[study ID]_[subject number]_[acquisition number] . The file

names would look something like this:

• 20120215_2340_SUBJ1_acq2.dcm

• 20120215_2340_SUBJ1_acq3.dcm

• 20120215_2340_SUBJ1_acq4.dcm

• 20120215_2340_SUBJ1_acq5.dcm

• etc.

Use the piece of the filename representing the acquisition number acq2, acq3, acq4, to

set the acquisition label in Flywheel. To do this for all files the folder we can add regex

pattern matching along with the Flywheel field name in brackets <>.

- pattern: "{project}"

- pattern: "{subject}"

- pattern: "{session}"

 scan:

 name: filename

 pattern:"^(?:[^_]*_){3}(?P<acquisition>[^.]*)"

Regex can quickly become complex. You should try out your regex before adding it to

your template. See regex101 test out regex.

packfile_type
Groups all files within that level of the the directory, compresses them as a single zip

file, and uploads them as an acquisition. You can specify a packfile type for the value.

However, it is important to note that this setting does not validate the type of file be-
17

https://regex101.com/

fore adding to the zip. The packfile is added to your acquisition label and becomes the

type in the acquisition metadata.

- pattern: "development"

- pattern: "Emily Example"

- pattern: "{subject}"

- pattern: "{session}"

- pattern: "{acquisition}"

 packfile_type: dicom

This would result in all files to be uploaded as {acquisistion}.dicom.zip

packfile_name
Overrides the default packfile name. Do not include quotes around the name.

- pattern: "development"

- pattern: "Emily Example"

- pattern: "{subject}"

- pattern: "{session}"

- pattern: "{acquisition}"

 packfile_type: dicom

 packfile_name: Historical_data

The example above would change the name of the packfile from {acquisi-

stion}.dicom.zip to Historical_data.dicom.zip

Variables for configuring Flywheel metadata
The following are the variables used in the template file for Flywheel labels. Use the

template variable to map all or part of a file or folder name to the equivalent Flywheel

metadata field:

Template variable Flywheel field

{group}* group._id

{project}* project.label

{subject} subject.label

{session} session.label

{acquisition} acquisition.label

18

*While you can use the {group} and {project} variable in your template, whatever you

use for the group and project in your command will override whatever is in the tem-

plate.

Additional Flywheel metadata you can configure
Groups: group.label

Projects: project.id

Subjects: subject._id

Sessions: session._id, session.uid, session.timestamp

Acquisitions: acquisition._id, acquisition.uid, acquisition.timestamp

Use the following format to assign these fields if you are not using regex:

- pattern: "{subject._id}"

Set custom metadata
You can also set custom metadata in the template. Custom metadata can help you

create data views or run analysis. Custom metadata fields following this naming con-

vention: [container].info.[fieldName]

For example, If a custom metadata field called RedCapID applies to subjects, the field

name would look like subject.info.RedCapID. One exampleTo assign this cus-

tom metadata:

- pattern: "{subject}_(?P<subject.info.RedCapID>.*)"

CLI command reference: fw ingest template

CLI command reference: Ingest template
If your directories are a mix of file formats and do not follow a standard structure, you

can use the ingest template command to set rules for how to import data.

See our directions for how to create and use the template [2].

Usage

fw ingest template [TEMPLATE] [SRC] [optional flags]

19

Required arguments

Required argument Description

SRC Path to the folder containing data for ingest

template Path to the template

Optional arguments

If you are using multiple optional arguments in your command, consider

creating a config file.

See our article for more information on creating and using a config file.

Optional arguments Description

-h, --help show this help message and exit

-C PATH, --config-file

PATH

Specify configuration options via config file. Learn how

to create this config file.

(default: ~/.config/flywheel/cli.yml)

--no-config Do NOT load the default configuration file (default:

False)

--ca-certs CA_CERTS The file to use for SSL Certificate Validation (default:

None)

-timezone TIMEZONE Set the effective local timezone for imports (default:

None)

--quiet Squelch log messages to the console(default: False)

--debug Turn on debug logging (default: False)

-v, --verbose Get more detailed output (default:False)

-y, --yes Assume the answer is yes to all prompts (default:False)

--no-subjects No subject level (create a subject for every session)

(default: False)

--no-sessions No session level (create a session for every subject)

(default: False)

--symlinks Follow symbolic links that resolve to directories

(default: False)

20

Optional arguments Description

--include-dirs PATTERN Patterns of directories to include (default: [])

When S3 bucket is configured as

source, this flag does not support re-

gex wildcard match, only “starts with.”

Include-dirs: OHM/101-10

Will match:OHM/101-105, OHM/

101-106, etc

--exclude-dirs PAT-

TERN

Patterns of directories to exclude (default: [])

--include PATTERN Patterns of filenames to include (default: [])

--exclude PATTERN Patterns of filenames to exclude (default: [])

--compression-level

COMPRESSION_LEVEL

The compression level to use for packfiles -1 by default.

0 for store. A higher compression level number means

more compression

--ignore-unknown-tags Ignore unknown dicom tags when parsing dicom files

(default: False)

--encodings ENCOD-

INGS

Set character encoding aliases. E.g. win_1251=cp1251

(default: [])

--de-identify De-identify DICOM files (default: False)

--deid-profile NAME Use the De-identify profile by name (default: minimal)

--skip-existing Skip import of existing files (default: False)

--no-audit-log Skip uploading audit log to the target projects (default:

False)

--load-subjects PATH Load subjects from the specified file (default: None)

--db-check-fn

DB_CHECK_FN

Optional database schema check function (default:

None)

-g ID, --group ID The id of the group, if not in folder structure (default:

None)

-p LABEL, --project LA-

BEL

The label of the project, if not in folder structure (default:

None)

Optional arguments

Optional argument Description

-h, --help show this help message and exit

-g ID, --group ID The id of the group, if not in folder structure

21

Optional argument Description

-p LABEL, --project

LABE

The label of the project, if not in folder structure

--no-subjects no subject level (create a subject for every session)

--no-sessions no session level (create a session for every subject)

--group-override ID Force using this group id

--project-override

LABEL

Force using this project label

--include-dirs PAT-

TERN

Patterns of directories to include

When S3 bucket is configured as source,

this flag does not support regex wildcard

match, only “starts with.”

Include-dirs: OHM/101-10

Will match:OHM/101-105, OHM/

101-106, etc

--exclude-dirs PAT-

TERN

Patterns of directories to exclude

--include PATTERN Patterns of filenames to include

--exclude PATTERN Patterns of filenames to exclude

--compression-level

COMPRES-

SION_LEVEL

The compression level to use for packfiles -1 by default. 0

for store. A higher compression level number means more

compression

--ignore-unknown-

tags

Ignore unknown dicom tags when parsing dicom files

--encodings EN-

CODINGS

Set character encoding aliases. E.g. win_1251=cp1251

--de-identify De-identify DICOM files

--deid-profile NAME Use the De-identify profile by name. Learn more about how

to create a de-id profile.

--skip-existing Skip import of existing files

--no-audit-log Skip uploading audit log to the target projects

--load-subjects

PATH

Load subjects from the specified file

--detect-duplicates Identify duplicate data conflicts within source data and du-

plicates between source data and data in Flywheel. Dupli-

cates are skipped and noted in audit log

22

Reporter
These config options are only available when using cluster mode with the --follow ar-

gument or when using local worker.

Optional argument Description

--save-audit-logs PATH Save audit log to the specified path on the current ma-

chine

--save-deid-logs PATH Save deid log to the specified path on the current ma-

chine

--save-subjects PATH Save subjects to the specified file

Cluster config
These config options apply when using a cluster to ingest data.

Optional argument Description

--cluster CLUSTER Ingest cluster url (default: None)

-f, --follow Follow the progress of the ingest (default: False)

Worker config
These config options are only available when using local worker (--cluster is not de-

fined)

Optional argument Description

--jobs JOBS The number of concurrent jobs to run (e.g. scan jobs),

ignored when using cluster (default: 4)

--sleep-time SECONDS Number of seconds to wait before trying to get a task

(default: 1)

--max-tempfile

MAX_TEMPFILE

The max in-memory tempfile size, in MB, or 0 to always

use disk (default: 50)The max in-memory tempfile size,

in MB, or 0 to always use disk (default: 50)

General

Optional argument Description

-C PATH, --config-file Specify configuration options via config file.

Learn more about how to create this file.

--no-config Do NOT load the default configuration file

-y, --yes Assume the answer is yes to all prompts

--ca-certs CA_CERTS Set the effective local timezone for imports

23

Optional argument Description

--timezone TIME-

ZONE

Set the effective local timezone for imports

-q, --quiet Squelch log messages to the console

-d, --debug Turn on debug logging

-v, --verbose Get more detailed output

External resources

• YAMLlint: An online tool to verify if your YAML is valid.

• Regex101: An online regex validator.

24

http://www.yamllint.com/
https://regex101.com/

	Create a template for uploading data
	Overview
	What is a template?
	From your local directory structure
	
	To the Flywheel hierarchy

	Step 1: Create a template for file upload
	Additional template examples
	Below are some additional template examples.
	Setting custom metadata
	Template
	Outcome

	Using regex to set acquisition label from a file name
	Template
	Outcome

	Uploading DICOM files

	Step 2: De-identify your data
	Step 3: Run the fw ingest template command
	Step 3: Run the command
	From an s3 bucket
	From your computer

	Template fields reference
	Reference
	pattern
	select
	scan
	name
	dicom
	filename

	packfile_type
	packfile_name
	Variables for configuring Flywheel metadata
	Additional Flywheel metadata you can configure
	Set custom metadata

	CLI command reference: fw ingest template
	CLI command reference: Ingest template
	Usage
	Required arguments
	Optional arguments
	Optional arguments
	Reporter
	Cluster config
	Worker config
	General

	External resources

